Math 409 Midterm 2 practice

Name:

\qquad

This exam has 4 questions, for a total of 100 points.
Please answer each question in the space provided. No aids are permitted.

Question 1. (40 pts)

In each of the following eight cases, indicate whether the given statement is true or false. No justification is necessary.
(a) Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be convergent sequences in \mathbb{R}. Then the sequence $\left\{x_{n} y_{n}\right\}$ converges.
(b) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$ does not exist.
(c) Let $\left\{x_{n}\right\}$ be a sequence such that $x_{n} \in(0,1)$ for every $n \in \mathbb{N}$. Then $\left\{x_{n}\right\}$ has a subsequence which is Cauchy.
(d) $\lim _{x \rightarrow \infty} \frac{x-2 x^{2}+5 x^{3}}{6-x+x^{2}}=\infty$
(e) Let $\left\{x_{n}\right\}$ be a sequence in \mathbb{R} with the property that each of its subsequences has a convergent subsequence. Then $\left\{x_{n}\right\}$ is bounded.
(f) If a function is differentiable on \mathbb{R}, then it is uniformly continuous on \mathbb{R}.
(g) Let f be a function which is uniformly continuous on \mathbb{R}. Then the function g defined by $g(x)=f(f(x))$ for all $x \in \mathbb{R}$ is uniformly continuous on \mathbb{R}.
(h) If $f:(0,1) \rightarrow \mathbb{R}$ is continuous and bounded, then f is uniformly continuous.

Question 2. (20 pts)

(a) Let f be a function defined on an open interval containing a given point a. State what it means for $f(x)$ to converge to a number L as x approaches a.
(b) Let $a \in \mathbb{R}$ and let f and g be functions on \mathbb{R} such that $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist. Prove directly from the definition of a limit that $\lim _{x \rightarrow a}(f+g)(x)$ exists.

Question 3. (20 pts)
(a) State the Extreme Value Theorem.
(b) Give an example of a function f which is bounded on $[0,1]$ but does not have a maximum on $[0,1]$.

Question 4. (20 pts)
(a) State the Intermediate Value Theorem.
(b) Assuming the fact that the function $\cos x$ is continuous on \mathbb{R}, prove that there exists an $x \in \mathbb{R}$ such that $x^{6}+x^{4}+1=2 \cos x^{3}$.

